Jugular Bulb Venous Oximetry During Resection of an Intracranial Arteriovenous Malformation: A Case Report

Gregory Krolczyk MD, MSc; Peter A. Gooderham MD; Henrik Huttunen MD; Alana M. Flexman MD

1Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
2Department of Surgery, Division of Neurosurgery, University of British Columbia, Vancouver, BC, Canada

Introduction

Jugular venous oximetry is used to monitor cerebral oxygenation and optimize cerebral blood flow and oxygen delivery. The oxygen saturation of venous blood obtained from the jugular bulb (SjvO₂) can also be used to estimate the shunt fraction through an intracranial arteriovenous malformation (AVM) yet few reports exist in the literature about the use of this monitor during resection.¹ ² We present a case in which jugular venous oximetry was used to monitor the extent of resection of an intracranial arteriovenous malformation. Unlike previous publications, we fixed many factors that affect the SjvO₂ and our report includes a detailed account of the anesthetic management and neurophysiological conditions during resection.

Case Description

Patient
- 45 year old female
- PMHx: Seizures (controlled), smoking
- AVM: right parietal, Spetzler-Martin Grade 3, partial (50%) embolization 3 weeks prior to surgery

Monitoring
- 5 lead ECG, NIBP, pulse oximetry, esophageal temperature probe
- Arterial line, jugular bulb catheter, central line

Anesthesia
- Anesthesia maintained with sevoflurane and remifentanil infusion (0.15 mcg/kg/min)

Results

Figure 1: Pre-Op T2 Weighed MR image slice through parietal lobe showing 3 X 4 cm AVM

Figure 2: Arterial (art) and jugular (jug) venous saturations during surgery

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>FiO₂</th>
<th>SjvCO₂ (mmHg)</th>
<th>SjvO₂ (mmHg)</th>
<th>MAP (mmHg)</th>
<th>Temp (°C)</th>
<th>Hg (mg/ml)</th>
<th>% Sevo</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.5</td>
<td>34</td>
<td>39</td>
<td>58</td>
<td>34.5</td>
<td>103</td>
<td>1</td>
</tr>
<tr>
<td>165</td>
<td>0.6</td>
<td>31</td>
<td>36</td>
<td>73</td>
<td>34.7</td>
<td>105</td>
<td>1</td>
</tr>
<tr>
<td>285</td>
<td>0.6</td>
<td>33</td>
<td>35</td>
<td>61</td>
<td>36.2</td>
<td>109</td>
<td>1</td>
</tr>
<tr>
<td>345</td>
<td>0.6</td>
<td>33</td>
<td>35</td>
<td>76</td>
<td>36.8</td>
<td>107</td>
<td>1</td>
</tr>
<tr>
<td>406</td>
<td>0.6</td>
<td>33</td>
<td>32</td>
<td>59</td>
<td>37.1</td>
<td>94</td>
<td>1</td>
</tr>
<tr>
<td>465</td>
<td>0.6</td>
<td>33</td>
<td>35</td>
<td>64</td>
<td>36.9</td>
<td>84</td>
<td>1</td>
</tr>
<tr>
<td>515</td>
<td>0.6</td>
<td>34</td>
<td>36</td>
<td>61</td>
<td>36.9</td>
<td>82</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Physiologic and anesthetic parameters during course of surgery

Results

- Invasive Monitoring
 - Post operative imaging confirmed appropriate positioning of jugular bulb catheter
 - Estimated blood loss was 1000ml
 - Uneventful intraoperative course

Variation of Fixed Parameters (Mean (SD))
- P₂CO₂: 33 (1)
- P₂CO₂: 35 (2)
- End-Tidal Sevoﬂurane concentration (%): 1 (0.04)
- F₂O₂: 0.59 (0.04)

Conclusions

We provide an original case description in which intermittent SjvO₂ sampling was used to follow the decreasing shunt fraction during resection of an intracranial AVM while fixing many of the neurophysiological factors that influence the SjvO₂. Further research is required to determine the efficacy and safety of this technique.

References